Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 136(7): 148, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294325

RESUMEN

KEY MESSAGE: Twenty-two compensating wheat-Dasypyrum villosum translocations carrying the powdery mildew resistance gene PmV were developed using a triple marker selection strategy in a large homozygous ph1bph1b population. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive wheat disease in China. Currently, nearly all resistant varieties grown in the middle and lower reaches of the Yangtze River carry Pm21 which is present in a wheat-Dasypyrum villosum T6V#2S·6AL translocation. Its widespread use poses a strong risk of loss of effectiveness if the pathogen were to change. PmV, a Pm21 homolog carried by a wheat-D. villosum T6V#4S·6DL translocation, is also resistant to powdery mildew but is less transmittable and exploited in cultivars. To utilize PmV more effectively, a new recombinant translocation T6V#4S-6V#2S·6AL carrying PmV with a higher transmission rate was used as a basic material for inducing smaller alien translocations. A locally adapted ph1b-carrying line, Yangmai 23-ph1b, was crossed with T6V#4S-6V#2S·6AL to generate a homozygous ph1bph1b population of 6300 F3 individuals. A modified triple marker strategy based on three co-dominant markers including the functional marker MBH1 for PmV in combination with distal and proximal markers 6VS-GX4 and 6VS-GX17, respectively, was used to screen for new recombinants efficiently. Forty-eight compensating translocations were identified, 22 of which carried PmV. Two translocation lines, Dv6T25 with the shortest distal segment carrying PmV and Dv6T31 with the shortest proximal segment carrying PmV were identified, both expressed normal transmission and therefore could promote PmV in wheat breeding. This work exemplifies a model for rapid development of wheat-alien compensating translocations.


Asunto(s)
Fitomejoramiento , Triticum , Humanos , Triticum/genética , Genes de Plantas , Poaceae/genética , Translocación Genética , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
2.
Theor Appl Genet ; 136(1): 1, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36645449

RESUMEN

KEY MESSAGE: A novel adult-plant leaf rust resistance gene LrYang16G216 on wheat chromosome 6BL was identified and mapped to a 0.59 cM genetic interval by BSA and conventional linkage method. Leaf rust (Puccinia triticina) is one of the most devastating fungal diseases of wheat (Triticum aestivum L.). Discovery and identification of new resistance genes is essential to develop disease-resistant cultivars. An advanced breeding line Yang16G216 was previously identified to confer adult-plant resistance (APR) to leaf rust. In this research, a recombinant inbred line (RIL) population was constructed from the cross between Yang16G216 and a highly susceptible line Yang16M6393, and genotyped with exome capture sequencing and 55 K SNP array. Through bulked segregant analysis (BSA) and genetic linkage mapping, a stable APR gene, designated as LrYang16G216, was detected and mapped to the distal region of chromosome arm 6BL with a genetic interval of 2.8 cM. For further verification, another RIL population derived from the cross between Yang16G216 and a susceptible wheat variety Yangmai 29 was analyzed using the enriched markers in the target interval, and LrYang16G216 was further narrowed to a 0.59 cM genetic interval flanked by the KASP markers Ax109403980 and Ax95083494, corresponding to the physical position 712.34-713.94 Mb in the Chinese Spring reference genome, in which twenty-six disease resistance-related genes were annotated. Based on leaf rust resistance spectrum, mapping data and physical location, LrYang16G216 was identified to be a novel and effective APR gene. The LrYang16G216 with linked markers will be useful for marker-assisted selection in wheat resistance breeding.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Mapeo Cromosómico , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Hojas de la Planta
3.
Theor Appl Genet ; 133(1): 217-226, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31587088

RESUMEN

KEY MESSAGE: A cytological map of Haynaldia villosa chromosome arm 4VS was constructed to facilitate the identification and utilization of beneficial genes on 4VS. Induction of wheat-alien chromosomal structure aberrations not only provides new germplasm for wheat improvement, but also allows assignment of favorable genes to define physical regions. Especially, the translocation or introgression lines carrying alien chromosomal fragments with different sizes are useful for breeding and alien gene mapping. Chromosome arm 4VS of Haynaldia villosa (L.) Schur (syn. Dasypyrum villosum (L.) P. Candargy) confers resistances to eyespot and wheat yellow mosaic virus (WYMV). In this research, we used both irradiation and the pairing homoeologous gene (Ph) mutant to induce chromosomal aberrations or translocations. By using the two approaches, a structural aberration library of chromosome arm 4VS was constructed. In this library, there are 57 homozygous structural aberrations, in which, 39 were induced by the Triticum aestivum cv. Chinese Spring (CS) ph1b mutant (CS ph1b) and 18 were induced by irradiation. The aberrations included four types, i.e., terminal translocation, interstitial translocation, deletion and complex structural aberration. The 4VS cytological map was constructed by amplification in the developed homozygous aberrations using 199 4VS-specific markers, which could be allocated into 39 bins on 4VS. These bins were further assigned to their corresponding physical regions of chromosome arm 4DS based on BLASTn search of the marker sequences against the reference sequence of Aegilops tauschii Cosson. The developed genetic stocks and cytological map provide genetic stocks for wheat breeding as well as alien gene tagging.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Biblioteca de Genes , Triticum/citología , Triticum/genética , Análisis Citogenético , Resistencia a la Enfermedad/genética , Genes de Plantas , Sitios Genéticos , Marcadores Genéticos , Iones , Virus del Mosaico/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Recombinación Genética/genética , Homología de Secuencia de Ácido Nucleico , Triticum/virología
5.
Front Plant Sci ; 8: 1914, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163626

RESUMEN

Pm21, originating from wheat wild relative Dasypyrum villosum, confers immunity to all known races of Blumeria graminis f. sp. tritici (Bgt) and has been widely utilized in wheat breeding. However, little is known on the genetic basis of the Pm21 locus. In the present study, four seedling-susceptible D. villosum lines (DvSus-1 ∼ DvSus-4) were identified from different natural populations. Based on the collinearity among genomes of Brachypodium distachyon, Oryza, and Triticeae, a set of 25 gene-derived markers were developed declaring the polymorphisms between DvRes-1 carrying Pm21 and DvSus-1. Fine genetic mapping of Pm21 was conducted by using an extremely large F2 segregation population derived from the cross DvSus-1/DvRes-1. Then Pm21 was narrowed to a 0.01-cM genetic interval defined by the markers 6VS-08.4b and 6VS-10b. Three DNA markers, including a resistance gene analog marker, were confirmed to co-segregate with Pm21. Moreover, based on the susceptible deletion line Y18-S6 induced by ethyl methanesulfonate treatment conducted on Yangmai 18, Pm21 was physically mapped into a similar interval. Comparative analysis revealed that the orthologous regions of the interval carrying Pm21 were narrowed to a 112.5 kb genomic region harboring 18 genes in Brachypodium, and a 23.2 kb region harboring two genes in rice, respectively. This study provides a high-density integrated map of the Pm21 locus, which will contribute to map-based cloning of Pm21.

6.
Sci Rep ; 7(1): 11799, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924253

RESUMEN

Sharp eyespot is a major fungal disease of wheat caused by Rhizoctonia cerealis in cool and humid environments worldwide. In this study, 224 single seed descent derived F13, F14 and F15 recombinant inbred lines (RILs) from the cross between CI12633 (a resistant cultivar) and Yangmai 9 (a susceptible cultivar) were assessed for sharp eyespot resistance (R.cerealis isolate R0301) in field and greenhouse conditions in three growing seasons. Different agronomic characteristics were also evaluated in the field with no disease infection. All the lines were genotyped with the Illumina iSelect 90 K SNP wheat chip and 101 SSR markers. Sharp eyespot resistance was significantly negatively correlated with heading date and tiller angle, and significantly positively correlated with the diameter of the basal first internode and second internode. Five QTL with a likelihood of odds ratio score of higher than 3.0 were detected on chromosomes 2BS, 4BS, 5AL and 5BS, respectively. These identified QTL may be used in future wheat breeding programs through marker assisted selection for developing sharp eyespot resistant cultivars.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Rhizoctonia , Triticum , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología
7.
BMC Genomics ; 18(1): 167, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202009

RESUMEN

BACKGROUND: Haynaldia villosa (L.) Schur (syn. Dasypyrum villosum L. Candargy, 2n = 14, genome VV) is the tertiary gene pool of wheat, and thus a potential resource of genes for wheat improvement. Among other, wheat yellow mosaic (WYM) resistance gene Wss1 and a take-all resistance gene were identified on the short arm of chromosome 4 V (4VS) of H. villosa. We had obtained introgressions on 4VS chromosome arm, with the objective of utilizing the target genes. However, monitoring these introgressions has been a daunting task because of inadequate knowledge as to H.villosa genome, as reflected by the lack of specific markers. RESULTS: This study aims to develop 4VS-specific markers by combination of chromosome sorting and next-generation sequencing. The short arm of chromosome 4VS of H.villosa was flow-sorted using a FACSVantage SE flow cytometer and sorter, and then sequenced by Illumina sequencing. The sequence of H. villosa 4VS was assembled by the software Hecate, and then was compared with the sequence assemblies of wheat chromosome arms 4AL, 4BS and 4DS and Ae. tauschii 4DS, with the objectives of identifying exon-exon junctions and localizing introns on chromosome 4VS of H. villosa. The intron length polymorphisms suitable for designing H. villosa primers were evaluated with criteria. Consequently, we designed a total of 359 intron targeting (IT) markers, among which 232 (64.62%) markers were specific for tracing the 4VS chromatin in the wheat background. CONCLUSION: The combination of chromosome sorting and next-generation sequencing to develop specific IT markers for 4VS of H. villosa has high success rate and specificity, thus being applicable for the development of chromosome-specific markers for alien chromatin in wheat breeding.


Asunto(s)
Cruzamiento/métodos , Cromosomas de las Plantas/genética , Marcadores Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Intrones/genética , Poaceae/genética , Triticum/genética
8.
Plant Physiol Biochem ; 113: 40-50, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28182966

RESUMEN

The stripe rust resistance gene, Yr26, is commonly used in wheat production. Identification of Yr26 resistance related genes is important for better understanding of the resistance mechanism. TaRab18, a putative small GTP-binding protein, was screened as a resistance regulated gene as it showed differential expression between the Yr26-containing resistant wheat and the susceptible wheat at different time points after Pst inoculation. TaRab18 contains four typical domains (GI to GIV) of the small GTP-binding proteins superfamily and five domains (RabF1 to RabF5) specific to the Rab subfamily. From the phylogenetic tree that TaRab18 was identified as belonging to the RABC1 subfamily. Chromosome location analysis indicated that TaRab18 and its homeoalles were on the homeologous group 7 chromosomes, and the Pst induced TaRab18 was on the 7 B chromosome. Functional analysis by virus induced gene silencing (VIGS) indicated that TaRab18 was positively involved in the stripe rust resistance through regulating the hypersensitive response, and Pst can develop on the leaves of TaRab18 silenced 92R137. However, over-expression of TaRab18 in susceptible Yangmai158 did not enhance its resistance dramatically, only from 9 grade in Yangmai158 to 8 grade in the transgenic plant. However, histological observation indicated that the transgenic plants with over-expressed TaRab18 showed a strong hypersensitive response at the early infection stage. The research herein, will improve our understanding of the roles of Rab in wheat resistance.


Asunto(s)
Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Proteínas de Unión al GTP rab/genética , Secuencia de Bases , Basidiomycota/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Interacciones Huésped-Patógeno , Filogenia , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Transformación Genética , Triticum/citología , Triticum/microbiología , Activación Viral
9.
Theor Appl Genet ; 129(4): 819-829, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26791837

RESUMEN

KEY MESSAGE: The powdery mildew resistance gene Pm21 was physically and comparatively mapped by newly developed markers. Seven candidate genes were verified to be required for Pm21 -mediated resistance to wheat powdery mildew. Pm21, a gene derived from wheat wild relative Dasypyrum villosum, has been transferred into common wheat and widely utilized in wheat resistance breeding for powdery mildew. Previously, Pm21 has been located to the bin FL0.45-0.58 of 6VS by using deletion stocks. However, its fine mapping is still a hard work. In the present study, 30 gene-derived 6VS-specific markers were obtained based on the collinearity among genomes of Brachypodium distachyon, Oryza and Triticeae, and then physically and comparatively mapped in the bin FL0.45-0.58 and its nearby chromosome region. According to the maps, the bin FL0.45-0.58 carrying Pm21 was closely flanked by the markers 6VS-03 and 6VS-23, which further narrowed the orthologous regions to 1.06 Mb in Brachypodium and 1.38 Mb in rice, respectively. Among the conserved genes shared by Brachypodium and rice, four serine/threonine protein kinase genes (DvMPK1, DvMLPK, DvUPK and DvPSYR1), one protein phosphatase gene (DvPP2C) and two transcription factor genes (DvGATA and DvWHY) were confirmed to be required for Pm21-mediated resistance to wheat powdery mildew by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) and transcriptional pattern analyses. In summary, this study gives new insights into the genetic basis of the Pm21 locus and the disease resistance pathways mediated by Pm21.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/genética , Triticum/genética , Ascomicetos , Brachypodium/genética , ADN de Plantas/genética , Marcadores Genéticos , Oryza/genética , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Triticum/microbiología
10.
Theor Appl Genet ; 126(12): 2921-30, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23989649

RESUMEN

The wheat spindle streak mosaic virus (WSSMV) or wheat yellow mosaic virus (WYMV) resistance gene, Wss1, from Haynaldia villosa, was previously mapped to the chromosome arm 4VS by the development of 4V (4D) substitution and T4DL·4VS translocation lines. For better utilization and more accurate mapping of the Wss1, in this research, the CS ph1b mutant was used to induce new translocations with shortened 4VS chromosome fragments. Thirty-five homozygous translocations with different alien fragment sizes and breakpoints of 4VS were identified by GISH and molecular marker analysis. By field test, it was found that all the identified terminal translocations characterized as having smaller 4VS chromosome segments in the chromosome 4DS were highly resistant to WYMV, while all the interstitial translocations with 4VS inserted into the 4DS were WYMV susceptible. Marker analysis using 32 4VS-specific markers showed that both the terminal and interstitial translocations had different alien fragment sizes. Five specific markers could be detected in the WYMV-resistant terminal translocation line NAU421 with the shortest introduced 4VS fragment, indicating they can be used for marker-assisted selection in wheat breeding. Based on the resistance evaluation, GISH and molecular marker analysis of the available translocations, the gene(s) conferring the WYMV resistance on 4VS could be further cytologically mapped to the distal region of 4VS, immersed in the bin of FL 0.78-1.00. The newly developed small fragment translocations with WYMV resistance and 4VS specific markers have laid solid groundwork for the utilization in wheat breeding for WYMV resistance as well as further cloning of Wss1.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Virus del Mosaico/fisiología , Enfermedades de las Plantas/genética , Poaceae/genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , ADN de Plantas/genética , Marcadores Genéticos/genética , Enfermedades de las Plantas/virología , Translocación Genética , Triticum/virología
11.
Chromosome Res ; 19(2): 225-34, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21331795

RESUMEN

Fusarium head blight (FHB), also called wheat scab, is an important disease in warm and humid regions worldwide, which not only reduces crop yield and grain quality, but also is a major safety concern in food and feed production due to mycotoxin contamination. Growing wheat cultivars with FHB resistance is one of the most economical and effective means to control the disease. Chinese wheat landrace Wangshuibai is an important resistant source from southern China. Several resistance QTLs in Wangshuibai were identified and mapped on chromosomes or chromosomal arms including 3BS, 4B, 6BS, 7AL, etc. In the present research, a mutant with increased FHB susceptibility, designated as NAUH117, was identified from the M(1) progenies of Wangshuibai irradiated by fast neutron. Genetic analysis of the F (1), F (2), and F (2:3) families from the reciprocal cross of Wangshuibai and NAUH117 indicated that NAUH117 was a recessive mutant. Genome-wide molecular marker analysis identified a deletion in the short arm of chromosome 3B of NAUH117, spanning the region of FL0.57 to FL1.00 that covers the locus of Fhb1 previously mapped on chromosome 3BS. Further molecular cytogenetics characterization by bi-color fluorescence in situ hybridization using three repetitive sequences, pSc119.2, pAs1 and GAA-satellite indicated that a multiple chromosome rearrangements occurred in chromosomes 3B, 6B, 3D, 4D, and 3A of the mutant. During these processes, a distal fragment of chromosome arm 3BS was eliminated, which is confirmed by molecular marker analysis. Four markers covered the deletion fragment were used for analysis of the F (2) population. The result showed that the 3BS deletion was only present in the susceptible plants, indicating that the deletion of 3BS fragment in NAUH117 increased susceptibility to FHB. The susceptible mutant will be valuable for the validation of the contribution of the resistant QTL located on 3BS, and for the characterization of the molecular mechanisms of FHB resistance in Wangshuibai.


Asunto(s)
Deleción Cromosómica , Fusarium/patogenicidad , Triticum/inmunología , Susceptibilidad a Enfermedades , Neutrones Rápidos , Inmunidad/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...